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It is shown that essentially nonlinear models for solids with complex internal structure may be studied using
phenomenological and proper structural approaches. It is found that both approaches give rise to the same
nonlinear equation for traveling longitudinal macrostrain waves. However, presence of the connection between
macro- and microfields in the proper structural model prevents a realization of some important solutions. First,
it is obtained that simultaneous existence of compression and tensile waves is impossible in contrast to the
phenomenological approach. Then, it is found that correlation between macro- and internal strains gives rise to
the crucial influence of the velocity of the macrostrain wave on the existence of either compression or tensile
localized strain waves. Also, it is shown that similar profiles of the macrostrain solitary waves may be
accompanied by distinct profiles of the microstrain waves. Finally, the dispersion curves for the waves belong
to the different branches. This is important for internal structural deviations caused by the dynamical loading
due to the localized macrostrain wave propagation and demonstrates a need in the development of the proper
structural approaches relative to the phenomenological ones.
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I. INTRODUCTION

The interest in the dynamic behavior of microstructured
materials has grown tremendously with the recent manufac-
ture and synthesis of new manifold strongly discrete and
layered systems, artificial lattices of nanodots, and other mi-
croelements while the classical theories of elasticity and
magnetism cannot explain some of the experimental data
concerning the properties of such materials with complicated
microstructure. This is particularly true for materials of new
types such as nanocrystalline alloys, ceramic composites,
some biological materials �tissues�, multilayered magnetic
films and elastic plates, artificial lattices, elastic and optical
wave guides with a net of passive and active elements or
corrugated internal structure, granular materials, and com-
pounds exhibiting damage under experimental conditions of
high speeds of deformation �or high frequencies of vibra-
tions�. Similar problems arise for the description of soils and
rocks but at the macroscale.

The main difficulties in obtaining the solutions of these
problems are related to the existence of intrinsic properties
such as additional degrees of freedom, geometric restriction,
and geometric characteristics such as size of grains, period-
icity of multiatomic lattice or a layered structure, periodicity
of active nanoelements, etc. Considerable progress was
achieved in the linear description of static states. However,
an important problem is to explain how these static states are
achieved as time goes on, hence to describe a complex dy-
namic behavior. Also, most of the parameters are usually
obtained using dynamical methods based on the measure-

ments of the velocity of acoustic waves of various polariza-
tions. In particular, these are the higher-order elastic con-
stants of many isotropic and crystalline solids that may be
found in textbooks on elasticity. The dynamical modeling of
materials with internal structure is not well developed, and
we are missing values of the parameters of the existing mod-
els.

From the point of view of dynamical processes these pa-
rameters characterize nonlinear, dispersive, and dissipative
properties of the materials with internal structure. These
properties may be recognized by means of the strain waves’
behavior. Among nonlinear strain waves of special interest
are those that propagate keeping their shape and velocity.
One of them is the bell-shaped solitary wave arising as a
result of a balance between nonlinearity and dispersion. It is
important to find the conditions required for the existence of
such a solitary wave in order to know when localization of
the strain field is possible. On the other hand, existence of
such localized strain waves allows us to estimate the un-
known material parameters measuring the wave amplitude
and velocity since the relationships between the wave and
the material parameters may be found in an explicit form.

To describe strain solitary waves, it is necessary to reveal
the sources of nonlinearity and dispersion. The classic elastic
theory admits two main kinds of nonlinearity. The first one is
the geometrical nonlinearity following from the exact rela-
tionship for the tensor of finite strains. An anharmonicity in
interatomic interaction gives rise to the so-called physical
nonlinearity. Contrary to the geometrical nonlinearity, it is
not described by an exact analytical formula but is modeled
by implementing some hypothesis about deformations. The
most popular of them is to consider truncated power series
expansion in strains. This approach is correct for the weakly
nonlinear processes as often happens for classic elastic ma-
terials �1–6�.
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Another source of nonlinearity is caused by the presence
of the components with contrasting elastic features including
cracks, intergranular contacts, dislocations at the grain
boundaries of polycrystals. It was found in Refs. �7–9�. that
this nonlinearity is essential, and the contribution of the qua-
dratic and cubic nonlinearities turns out to be of the same
order for materials with essentially non linear features. Then
the weakly nonlinear models in the form of power series
truncation cannot be applied in a strict sense. Nevertheless,
they are used already as the exact expressions in the frame-
work of a phenomenological approach �7–10�.

Another approach in the modeling of essentially nonlinear
processes is to apply a proper model for the internal structure
of the material. Thus, the rotatory molecular groups were
added to the usual one in atomic chain in Refs. �3,11,12�, and
large rotations were considered. A more complicated internal
motion is modeled in Refs. �13,14�, where translational in-
ternal motion is considered together with rotations. In both
models this essential nonlinearity has not been modeled by
any power series truncation.

Dispersion in classic elastic bodies is caused by finite
transverse sizes of a waveguide. To see how strong this dis-
persion is, one can note experimental observations of the
strain solitary wave of the amplitude of order 10−4 and the
width 33 mm in a rod of radius R=5 mm �5�. Also disper-
sion appears as a result of an internal complex structure of
the material �15–19�. Some estimates have been given for
materials with grains and for sandstones �20,21�. According
to them the solitary waves may exist in such media with
anticipated typical width 0.1–100 m. Finally, one can note
phonon dispersion arising in crystals that gives rise to the
strain solitary wave of the amplitude of order 10−4 and a
width of 100 Å observed in experiments �22–24�.

Therefore, dispersion may be detected and measured even
for media with complex internal structure. This is not true for
definitions of the values of the parameters characterizing es-
sential nonlinearity. That is why the simplified modeling
with an exploitation of a phenomenological approach is used.
However, a natural question arises whether this approach re-
flects correctly the processes in media with structure.

The main aim of this paper is to compare phenomenologi-
cal and proper structural modeling of essentially nonlinear
processes using the strain solitary wave solutions. Before
doing so a review of some known results of the weakly non-
linear modeling is presented in Sec. II to demonstrate the
efficiency of the solitary wave solution as a tool for the study
of nonlinear dynamical processes. Then this methodology is
extended to the essentially nonlinear processes where some
models are developed. First, the phenomenological model
from Refs. �7–9� is used in Sec. III to derive the governing
equations for the strain waves in a medium with essentially
nonlinear properties. Then the similar equation is revealed in
description of the waves in paramagnetic crystals. Similarly,
Sec. III is devoted to obtaining the governing equation for
the macrostrain waves based on two proper structural models
developed in �3,11,12� and in �13�. The nonlinear and disper-
sive features of traveling wave solutions of both the phenom-
enological and structural models are studied and compared in
Sec. IV.

II. WEAKLY NONLINEAR MODELING

To illustrate the weakly nonlinear modeling of strain
waves, some examples are presented below chosen so as to
avoid complicated algebraic manipulations. Most popular are
the weakly nonlinear models based on a power series expan-
sion of the energy density in small strains or strain tensor
invariants. These series may be truncated since small strains
only are considered. This allows us to obtain simpler govern-
ing nonlinear equations for strains.

The Murnaghan model �1� may be noted among the mod-
els valid for isotropic materials like metals, polymers, etc. In
particular, the series truncated at the fourth order term is
called the nine-constant Murnaghan model, and its energy
density � reads

� =
� + 2�

2
I1

2 − 2�I2 +
l + 2m

3
I1

3 − 2mI1I2 + nI3 + �1I1
4

+ �2I1
2I2 + �3I1I3 + �4I2

2, �1�

where Ik ,k=1,2 ,3 are the invariants of the Cauchy-Green
strain tensor; the fourth-order elastic moduli ��1 ,�2 ,�3 ,�4�,
as well as the third-order ones, l ,m ,n, may be of either sign
contrary to the positive second-order moduli � and �. One
can obtain the stress-strain relationship from Eq. �1� in the
one-dimensional �1D� case, P=E�Ux+C1Ux

2+C2Ux
3, �Ux is

the longitudinal strain, E� is the Young modulus or a combi-
nation of the Lamé constants�, where the second term de-
scribes the quadratic nonlinearity, and C1=C1�l ,m ,n�. The
last term accounts for the cubic nonlinearity, and its coeffi-
cient depends on both the third- and the fourth-order moduli.
Usually, only quadratic nonlinearity �the so-called five-
constant Murnaghan model with �i=0 in Eq. �1�� is used to
describe longitudinal strain waves since the relative contri-
bution C2Ux /C1 of the last term in the stress-strain relation-
ship is negligibly small for usual elastic materials. Then the
governing equation for longitudinal strain waves v�x , t�=Ux
is obtained using the Hamilton variational principle. A wave
guide strain wave propagation should be considered to in-
volve dispersion, then for longitudinal strain waves in a rod
the governing equation is �2–6�

vtt − avxx − c1�v2�xx + �3vxxtt − �4vxxxx = 0, �2�

where

a =
E

�0
, c1 =

	

2�0
, �3 =

��1 − ��R2

2
, �4 =

�ER2

2�0
,

� is the Poisson ratio, 	=3E+2l�1−2��3+4m�1−2���1
+��2+6n�2. Here the dispersion coefficients �3 and �4 are
calculated using the value of the radius of the rod and the
material elastic properties. Equation �2� is often called the
double dispersive equation �DDE�.

The Murnaghan model may be extended to the crystals
�1,3,12,25�. In particular, a 1D problem for the cubic crystal
along the direction �100� is described by the energy expres-
sion for the displacement U�x , t� of the form
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� =
1

2
c11Ux

2 +
1

6
�3c11 + c111�Ux

3 +
1

24
�3c11 + 6c111 + c1111�Ux

4,

�3�

where c11, c111, and c1111 are the elastic constants of the
second, third, and fourth order. Like in an isotropic case, the
fourth-order terms are usually neglected. It allows Hao and
Maris �22,23� to derive the Boussinesq equation to describe
their experimental observations of strain solitary waves in
crystals,

�0vtt − c11vxx − 0.5�3c11 + c111��v2�xx − 2�0c
vxxxx = 0,

�4�

where �0 is the density in the underformed state, c is the
sound velocity �22�. Contrary to Eq. �2�, dispersion now
arises from the finite spacing of the atoms, the coefficient 

is calculated using the measurements of the wave front os-
cillations �26�.

The internal structure of material is often taken into ac-
count considering the development of the so-called Mindlin
model for a weakly nonlinear case. One way is to add the
linear gradient term in the classic Murnaghan expansion
�15�. This last term gives rise to the dispersion, and the gov-
erning equation for a medium is obtained in the form of the
DDE �2�. The dispersion term coefficients are measured for
some materials �20,21�.

Despite the DDE being nonintegrable, particular localized
traveling wave solutions may be easily obtained by direct
integration of it resulting in the first-order ordinary differen-
tial equation �ODE�

v�
2 =

1

6��3V2 − �4�
��0 + �1v + 6�V2 − a�v2 − 4c1v

3� , �5�

where �0 ,�1 are constants of integration, �=x−Vt. The last
equation possesses the well-known solitary wave solution
provided that �0=0, �1=0 �5,6�

v =
3�V2 − a�

2c1
cosh−2�k�x − Vt�� , �6�

with k given by

k2 =
V2 − a

2�R2�a − �1 − ��V2�
. �7�

Numerical simulation of DDE �2� �5,6� confirms the predic-
tions of the exact solutions. The most important prediction is
the dependence of the kind of the localized wave �tensile or
compression� on the sign of the nonlinear term coefficient
that is defined by the elastic constants of a material �the
Murnaghan moduli�. In particular, for positive c1, only ten-
sile exact solitary wave solution exists. In this case only
tensile input in numerics splits into a sequence of tensile
localized waves each described by Eq. �6� while negative
input is dispersed without localization of the waves.

A more complicated governing equation arises when a
microfield is introduced together with a macrofield
�18,27,28�. Then the Murnaghan model is extended by add-
ing the terms depending on the microfield describing the

influence of microstructure. Thus, the expression �with nota-
tion used in Refs. �18,27,28��,

� =
1

2
�AUx

2 + B�2 + C�x
2� + D�Ux +

1

6
NUx

3, �8�

yields the coupled governing equations for the macrodis-
placement U�x , t� and microstrain ��x , t� in the form

�Utt − AUxx = NUxUxx + D�x, �9�

I�tt − C�xx = − DUx − B� , �10�

where I is the microinertia. Again the nonlinearity is intro-
duced using the truncated series in Ux. Uncoupling may be
done in a different manner. Since the truncated expression of
the energy is used to obtain Eqs. �9� and �10�, these may be
decoupled in an asymptotic manner without traveling wave
solution assumption. The so-called slaving asymptotic proce-
dure should be applied like in �18� when smallness of the
strains is taken into account. Then Eq. �10� yields the expres-
sion for �,

� = −
D

B
Ux +

D

B2 �IUxtt − CUxxx� ,

whose substitution to Eq. �9� gives rise to the following DDE
for the strain function v:

�vtt − �A −
D2

B
�vxx =

N

2
�v2�xx +

D2

B2 �Ivxxtt − Cvxxxx� .

Here the dispersion terms arise due to the microstructure
contrary to the case of classic elastic bodies �e.g., rods�
where dispersion is caused by the boundaries of a wave-
guide.

Another way was not used in Ref. �18� but linearized
version of Eqs. �9� and �10� was transformed in such a way
in Ref. �19�. Let us differentiate Eq. �10� with respect to x
and use the expression for �x from Eq. �9�,

�x =
1

D
��Utt − AUxx − NUxUxx�

to eliminate �x in differentiated Eq. �10�. Then the governing
equation for the strain function v=Ux reads

�Bvtt − �AB − D2�vxx −
BN

2
�v2�xx + �I

�2

�t2 − C
�2

�x2���vtt

− Avxx −
N

2
�v2�xx� = 0. �11�

Usually the last nonlinear term is negligibly small and Eq.
�11� generalizes DDE by a more complicated dispersion
terms. Then the DDE traveling solitary wave solution �6�
holds for Eq. �11�,

v =
12��BV2 − AB + D2�

BN
cosh−2�k�x − Vt�� , �12�

with k given by

k2 =
��BV2 − AB + D2�

4��V2 − A��C − IV2�
. �13�
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In the general case Eq. �11� may be integrated when trav-
eling wave solutions are considered. Transformation to the
phase variable � gives rise to the ODE for v��� of the form

v�
2 =

Bv2�v2 + pv + q�
4�C − IV2��v + s�2 , �14�

where

s =
A − �V2

N
, p = −

4�2D2 − 3B�A − �V2��
3BN

,

q =
4��V2 − A��D2 + B��V2 − A��

BN2 .

One can see that Eq. �14� differs from the ODE reduction of
DDE �5�, and exact localized wave solution of form �6� does
not exist anymore. However, Eq. �14� may be integrated in a
standard manner giving localized bell-shaped wave solutions
in an implicit form. In particular, such a solution for the case
s0,B0 is given by

v =
v1 − v2t2

1 − t2 ; ln	 1 + t

1 − t
	 +

s

v1v2

ln	
v1 + 
v2t

v1 − 
v2t

	
=

2

N

C − IV2

B
� ,

where v2v1 are the real positive roots of equation v2+ pv
+q=0. The solutions of Eq. �14� may be also studied using
the phase portraits technique.

A nonlinearity may be involved also at the microlevel.
Extra nonlinear terms are added in the expression for energy
�8� in a phenomenological way �28�. Additional rotation de-
gree of freedom being taken into account gives rise to the
nonlinear terms caused by microstructure �29�,

�Utt − c1
2Uxx =

1

2

�

�x
��1Ux

2 +
l2

a2�2� , �15�

a2��tt − c3
2�xx� = − 	1� − �3Ux� , �16�

where a , l are the parameters of the lattice �29�, ��x , t� is the
angle of rotation. Implementation of the slaving principle is
not effective in this case. Instead, the function � is expressed
through U using the first equation �this was not considered in
Ref. �29��,

� =

2a

�3l

��V2 − c1
2�Ux − 0.5�1Ux

2 + Q1�1/2.

Substituting the last expression into Eq. �16� yields the
equation for the strain function v=Ux. However, it is rather
complicated in the general case. Considering only localized
traveling wave solutions depending on the phase variable �
=x−Vt, one obtains the following ODE for v���,

v�
2 =

4�3v
2�v + 2s��v2 + pv + q�

3a2�V2 − c3
2��v + s�2 , �17�

where

s =
c1 − V2

�1
, p =

3

4
�s +

	1

�3
�, q =

3	1

2�3
.

The periodic solution of Eq. �17� may be found using the
reference book �30�. Particular cases corresponding to the
bell-shaped solitary waves are obtained in an implicit form
like the solutions to Eq. �14�.

To sum up, the use of the truncated series allows us to
obtain the governing equations suitable for an analysis at
least in the 1D case. Particular localized wave solutions give
the conditions of the strain localizations which are realized in
numerical simulations of a more general unsteady process of
the strain evolution. The next section addresses the question
whether such an analysis is possible when nonlinearity is not
weak.

III. MODELS FOR ESSENTIALLY NONLINEAR STRAIN
WAVES

In this section we obtain model nonlinear equations for
the case when power series truncations become invalid in a
strict sense. Below two kinds of modeling of nonlinearity
and dispersion of the media which are then essentially non-
linear will be considered.

A. Phenomenological model for seismic waves in rocks and
media with microstructure

To obtain the governing equation for seismic essentially
nonlinear waves in the 1D case, the stress-strain relationship
suggested in �7–9,31� will be used of the form

P = E�Ux + C1Ux
2 + C2Ux

3, �18�

where P is the longitudinal stress, U�x , t� is the longitudinal
displacement, E� is the Young modulus or a combination of
the Lamé constants, C1 ,C2 are the parameters either ex-
pressed through the linear combinations of the third- and
fourth-order elastic moduli in Eq. �1� or measured directly. In
the 1D case the Murnaghan model yields

E� = � + 2�, C1 =
1

2
�3�� + 2�� + 2�l + 2m�� ,

C2 =
1

2
�� + 2� + 4�l + 2m� + 8�1� .

A classic elastic material such as aluminum yields C1 /E
�10 and C2 /E�100 �32� that makes contribution of the
third term in Eq. �18� small in comparison with that of the
second one for typical strains Ux�10−3–10−5. That is why
cubic nonlinear terms are neglected for modeling of longitu-
dinal strain waves.

This is not true for some rocks, sandstones, limestones
and granites, which is shown in Table I. The third-order con-
stants exceed the Lamé coefficients by 2 or even 4 orders.
This illustrates the phenomenon of abnormal nonlinearity
�8,9�, when even strains of order 10−4 should be considered
as nonlinear. At the same time the materials from Table I
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have the Lamé coefficients of the same order as of the classic
elastic materials.

The direct measurement of the coefficients in Eq. �18� for
a medium with tuff grains �8� yields C1 /E��130, C2 /E�

�104, that gives rise to almost equal contributions of qua-
dratic and cubic nonlinearities for the observed strains of
order 10−4. Similar estimates follow using the data for a loam
soil �8� and for a soft fault core �33� where C1 /E��103,
C2 /E��107 �8�. The relationship �18� was used in �31� to
model a medium with cracks; the estimates obtained there
are C1 /E��102, C2 /E��108.

According to Refs. �7–9,31� the source of abnormal non-
linearity is the presence of the components with contrasting
compressibility in the materials like shown in Table I. Usual
weak nonlinearity is caused by the anharmonicity in inter-
atomic interactions. Among the soft inclusions one can note
cracks, intergrain contacts, pores, and accumulation of dislo-
cations at the grain boundaries of polycrystals �7�.

The data presented before demonstrates uselessness of the
truncated power series expressions of strains in the expres-
sions for the energy and the strain used in the weakly non-
linear theory. Nevertheless, the phenomenological approach
of the essential nonlinear processes is based on the formal
use of Eq. �1� or Eq. �18� but as exact representations of the
energy or the strain �7–9,31�.

Recently, a theory has been developed that takes into ac-
count the major role of hysteretic nonlinearity �34� that gives
rise to a more complicated expression than Eq. �18�. How-
ever, analysis in Refs. �7–9,31� as well as the modeling in
Ref. �33� allows us to use Eq. �18� nevertheless especially
because the values of C1 and C2 found in these papers yield
the model based on Eq. �18� be suitable for real materials.

Dispersion in seismic media is brought about for various
reasons but essentially in the same manner as in the weakly
nonlinear theory. The higher-order derivative terms may be
added to Eq. �1� or Eq. �18� to describe coupled stresses
arising due to an internal structure, e.g., rotation of the par-
ticles �21�. In layered seismic structures dispersion is caused
by the finite size of a layer �21,33�.

Now we apply the algorithm of the weakly nonlinear
theory to obtain the governing equation. The Hamilton varia-
tional principle with the Murnaghan expression for the en-
ergy density �1� in the general 3D statement when the bound-
ary conditions are important, in particular, when a layer or
another wave guide is considered. The 1D statement for a
medium allows us to employ also Eq. �18� for the stresses by
substituting it into the 1D equation of motion. In the last case
dispersion is added phenomenologically like it is done in the
weakly nonlinear case in Refs. �22,23�. In any case the re-

sulting governing equation for v�x , t�=Ux is obtained in the
form

vtt − avxx − c1�v2�xx − c2�v3�xx + �3vxxtt − �4vxxxx = 0,

�19�

where a=E /�. Relationships for nonlinear term coefficients
are expressed either through the Murnaghan moduli of the
third and the fourth order and they depend upon the bound-
ary conditions. In the 1D statement they are given by the
coefficients in Eq. �18�, c1=2C1 /� and c2=3C2 /�. One can
see that this equation modifies the DDE Eq. �2� by only one
cubic nonlinear term.

The Eq. �19� is nonintegrable but traveling localized wave
solutions can be found by introducing the phase variable �
=x−Vt and transforming Eq. �19� to the following ODE:

v�
2 =

1

6��3V2 − �4�
��0 + �1v + 6�V2 − a�v2 − 4c1v

3 − 3c2v
4� ,

�20�

where �0 ,�1 are constants of integration. This equation is
similar to the ODE reduction of the Gardner equation that
accounts for internal shear waves in two-layer fluids �35�. In
fluids the equality of the contribution of quadratic and cubic
nonlinear terms happens for very special ratio between the
width of the layers and their densities �this is a weakly non-
linear problem� �35�.

Using above-mentioned analysis, one can suggest the fol-
lowing generalization of the weakly nonlinear model �Eqs.
�9� and �10��,

�Utt − AUxx = NUxUxx + MUx
2Uxx + D�x, �21�

I�tt − C�xx = − DUx − B� . �22�

Like in the weakly nonlinear case, the governing equation
for the macrostrain is obtained in the form

�Bvtt − �AB − D2�vxx −
BN

2
�v2�xx −

BM

3
�v3�xx + �I

�2

�t2

− C
�2

�x2���vtt − Avxx −
N

2
�v2�xx −

M

6
�v3�xx� = 0.

�23�

Usually the last nonlinear terms are negligibly small, and Eq.
�23� generalizes Eq. �19� by more complicated dispersion
terms.

TABLE I. Lamé’s and Murnaghan’s moduli in 1010 N /m2 for some rocks �after �10�� and contribution of
the quadratic nonlinearity.

Material � � l m C1 /E�

Cemented glass beads 0.6 0.55 −71.6 −67.8 −120.4

Sandstone Massilon SS 0.19 0.63 −7900 −1443.5 −2500

Limestone 1083 2.3 2.1 −830.2 −1130 −470

Granite Westerly 2.2 2.4 −2137.7 −2726.3 −1080
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B. Phenomenological model for strain waves in crystals

The coefficients in Eq. �18� for cubic crystals are obtained
using Eq. �3� of the form

E� = c11,C1 =
1

2
�3c11 + c111� ,

C2 =
1

6
�3c11 + 6c111 + c1111� .

Contrary to the higher-order Murnaghan moduli, the crystal-
line constants are known for many materials. Some of them
are shown in Table II.

It follows from Table II that usually crystals exhibit nor-
mal nonlinear features, and contribution of cubic nonlinear-
ity is less than that of the quadratic one. In particular, it
happens for MgO used in experiments in Refs. �22,23�,
which justifies their model Eq. �4� with only quadratic non-
linearity being taken into account. However, there exists
crystal V3Si for which cubic nonlinearity should be used
together with quadratic one. This crystal belongs to the A-15
structure compounds that call attention due to the interrela-
tion of structural instability and high-temperature supercon-
ductivity. An unusual degree of anharmonicity for this crystal
was observed in Ref. �38�.

The abnormal crystalline nonlinear features allow us to
suggest a generalization of the model equation Eq. �4� by

�0vtt − c11vxx −
1

2
�3c11 + c111��v2�xx −

1

6
�3c11 + 6c111 + c1111�

��v3�xx − 2�0c
vxxxx = 0. �24�

One can note that similar equation has been obtained in a
phenomenological way in Ref. �39� where a two atoms
model was used to obtain the governing equation. However,
the cubic nonlinear term coefficient in �39� is always lower
in order than the quadratic term one and dispersion is of
order of the cubic nonlinear term.

Recently an influence of magnetic field has been studied
in Refs. �40,41� for paramagnetic crystals. The nonlinear and
dispersion effects are governed by the intrinsic properties of
the crystal and the spin-phonon interaction. As a result the
governing equation for longitudinal strains was obtained
there in the form of Eq. �19� with coefficients defined by

a =
1

�
�c11 −

nsG11
2

4��0
� ;c1 =

1

2�
�3c11 + c111�;c2 =

1

6�
�3c11

+ 6c111 + c1111� +
nsG11

4

32�3�0
3 ,

�3 = −
nsG11

2

16��0
2�

, �4 =
h2

24�
�2c11 +

5nsG11
2

��0
� ,

where h is a distance between neighboring atoms in a lattice,
ns is concentration of the impure paramagnetic ions, G11 is a
constant of spin-phonon interaction, �0=2g�BB0 /�, g is the
Lande factor, �B is the Bohr magneton, B0 is the external
magnetic field directed perpendicular to the direction of the
strain wave propagation, � is the Plank’s constant.

In the absence of magnetic field the contribution of the
cubic nonlinearity in the model Eq. �19� is negligibly small.
In the presence of paramagnetic ions in the crystal the esti-
mations were obtained in �40,41� for the crystal MgO with
paramagnetic ions Fe2+ and Ni2+. It turns out that the value
of c2 may be 4 orders higher than that of c1. This is just the
case realized for seismic materials mentioned above when
both quadratic and cubic nonlinearities should be taken into
account for description of longitudinal strain waves.

C. Models for media with nonlinear internal structure

Among essentially nonlinear models for the strains we
first note the model for elastic ferroelectrics developed in
Refs. �3,11,12�. A continuum model was obtained in the 3D
case based on the assumption of a deformed chain of atoms
modified by a rotating microstructure. Both the nonlinearity
and dispersion are caused by a dipole rotation, while elastic
macrodeformations were assumed small enough to consider
them linearly elastic. When only longitudinal displacement
U�x , t� and rotation ��x , t� in the plane perpendicular to the
direction of the longitudinal wave propagation are taken into
account, the density of energy may be written in the nota-
tions of Refs. �3,11,12� as

� = 1/2�cL
2UX

2 + �X
2� + �� − �LUX��1 + cos���� .

Then the Hamilton variational principle gives rise to the
coupled equations:

�UTT − cL
2UXX = �L�1 + cos����X, �25�

�TT − �XX = ��LUX + ��sin��� . �26�

TABLE II. Third and fourth order elastic constants in 1010 N /m2 for some cubic crystals �after �36,37��
and contribution of the quadratic and cubic nonlinearities.

Material c11 c111 c1111 C1 /E� C2 /E�

MgO 29.7 −489.5 7100 −6.7 23.9

RbCN 9.8 −149.1 1304 −6.1 7.46

LiCN 15.2 −190.1 −6785 −4.75 −86.4

NaCl 5 −86.5 759 −7.2 8.5

KCl 3.87 −71.3 1141 −7.7 31.2

V3Si 29 −5.1�103 7.1�106 −85.6 4.04�104
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For small angles of rotation Eqs. �25� and �26� are trans-
formed to Eqs. �15� and �16�. Indeed, trigonometric functions
are expanded in Taylor series, and only first terms in the
expansions are left in Eqs. �25� and �26�, so cos��� is re-
placed by 1−�2 /2, while the sin function is replaced with �.

Less known is the model developed in Refs. �13,14� that
considers a complex lattice of a crystal consisting of two
sublattices generalizing the linear analog developed by Born
and Huang �42�. Besides interatomic forces between atoms,
the relative sublattices motion is taken into account in the
model, hence it generalizes the well-known Frenkel-
Kontorova model for the simple lattice to describe structural
deviations in the biatomic lattice.

According to �13,14� the governing equations are ob-
tained using a continuum approach without making a con-
tinuum limit of a discrete model similar to Refs. �3,12�. The
equations are derived for the vectors of macrodisplacement
U and relative microdisplacement u for the pair of atoms
with masses m1 and m2,

U =
m1U1 + m2U2

m1 + m2
, u =

U1 − U2

a
,

where a is a period of sublattice. In general, it allows us to
describe both translational and rotational motions of the in-
ternal structure. In the one-dimensional case, only transla-
tional motion is considered, and the Hamilton principle is
employed with kinetic energy density K,

K =
�Ut

2 + �ut
2

2
,

and the internal density energy �,

� =
EUx

2 + �ux
2

2
+ �p − SUx��1 − cos�u�� . �27�

Comparing it with the Murnaghan model �1�, one can see
the absence of the terms describing physical nonlinearity at
the macro level. Instead, the last term in Eq. �27� accounts
for the sublattices interaction. In the absence of coupling at
S=0, the Frenkel-Kontorova model is revealed. Trigonomet-
ric functions allow us to describe an identity of the complex
lattice after displacement proportional to the period of the
sublattice.

Then the following coupled equations are obtained:

�Utt − EUxx = S�cos�u� − 1�x, �28�

�utt − �uxx = �SUx − p�sin�u� . �29�

Contrary to the phenomenological model developed in the
previous subsection, the coefficients of both structural mod-
els are unknown. Some estimations may be given based on
the fact that for wave processes the right-hand side in Eqs.
�28� and �29� should be of lower order in comparison with
those in the left-hand side. The function u may be of order 1,
the macrostrain v=Ux is of order 10−4–10−5, and the Young
modulus is of order 1010 for most materials. Therefore, the
value of the parameter S should be of order 106 as follows

from Eq. �28� while p�103 follows from Eq. �29�. Similar
estimations may be done for the coefficients in Eqs. �25� and
�26�.

Both Eqs. �25� and �26� and Eqs. �28� and �29� may be
decoupled and transformed to a single governing equation in
two ways. The authors of the models �3,11–14� obtained the
double Sine-Gordon equation for a variable characterizing
the micromotion. The ODE reduction of Eqs. �28� and �29�
for the traveling wave solutions depending only on the phase
variable, �=x−Vt is obtained from Eqs. �28� and �29� after
some algebraic manipulations,

u�
2 = g + 2p1

��1 − cos u� − p2
��1 − cos u�2, �30�

where g is a constant of integration and

p1
� =

p

��cl
2 − V2��1 −

�S

p��cL
2 − V2�� ,

p2
� =

S2

���cl
2 − V2��cL

2 − V2�
, �31�

where cL
2 =E /�, cl

2=� /�, � is another constant of integration.
The solitary wave solutions correspond to the choice u=0 at
infinities giving g=0. The choice u= �� at infinity corre-
sponds either to the solitary wave or a kink of micromotion,
in this case g=4�p2

�− p1
��.

Now the governing equation for a macrostrain is ob-
tained. In this case Eq. �28� is resolved for cos�u�,

cos�u� = 1 −
�E − �V2�Ux − �

S
, �32�

where � is the same as in Eqs. �31�. Then it follows from Eq.
�29� that

v�
2 = a0 + a1v + a2v

2 + a3v
3 + a4v

4, �33�

which is the same as Eq. �20� derived in the framework of a
phenomenological approach. Now all coefficients ai depend
on the velocity V,

a0 =
�2�2S + ����S� − 2p��cL

2 − V2��
��S3�V2 − cl

2��cL
2 − V2�

−
��g�2S + ��

S2 ,

a1 =
2p��2S + ��

S���cL
2 − V2��V2 − cl

2�
−

2a0S2�S + ��
���cL

2 − V2����2S + ���
,

a2 =
4p��cL

2 − V2��S + �� + S��2S + ��
��S�cL

2 − V2��cl
2 − V2�

+
a0S2

���2S + ��
,

a3 =
2�p��cL

2 − V2� + S�S + ���
S��V2 − cl

2�
, a4 =

��cL
2 − V2�

��cl
2 − V2�

.

The term v�
2 reflects dispersion that is caused by coupling

like nonlinearity. The estimations for the coefficients done
before allow us to check whether contribution of quadratic
and cubic nonlinear term is of the same order. Indeed, the
nonlinear term coefficients ratio a3 /a4=max p /S ,S /E, turns
out of order 10−3, which yields almost equal contribution of
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quadratic and cubic nonlinearities for typical elastic strains
of order 10−4. Equation �33� possesses solutions vanishing at
infinity, ���→�, together with its derivatives provided that
a0=0 and a1=0. The former happens for �=0 or �=−2S
while the latter requires also a0 / ���2S+���=0. The last con-
dition is realized provided that g=0 for �=0 and g=4�p2

�

− p1
�� for �=−2S that coincides with the analysis done above

for the solutions of the Eq. �30�.

IV. TRAVELING WAVE SOLUTIONS

A reasonable question arises after establishing a similarity
in the governing equations for the macrostrains: is there a
need in the study of a more complicated structural model
with unknown coefficients rather than a simpler phenomeno-
logical model whose parameters it is possible to measure?
An analysis of exact localized traveling wave solutions will
be used in this section to answer it.

A. Localized strain waves for the phenomenological model

When �0=0, �1=0, ODE �20� for the phenomenological
model possesses exact solutions of two kinds that may be
obtained by direct integration �35,43,44�

v1 =
A

Q cosh�k�� + 1
, �34�

v2 = −
A

Q cosh�k�� − 1
, �35�

where

A =
3�V2 − a�

c1
, Q =
1 +

9c2

2c1
2 �V2 − a�, k2 =

V2 − a

�4 − �3V2 .

�36�

The solution v2 is bounded for positive values of c2,
which happens for all seismic media studied in Refs.
�7–9,31�. The amplitude of the solutions is always of either
sign that makes possible the simultaneous existence of com-
pression and tensile strain waves. This is the most important
difference from the weakly nonlinear case considered in Sec.
I.

These waves are generated and interact in different ways
as discovered by numerical simulations in Refs. �45–48�. Ex-
act solutions �34� and �35� need a specific initial condition as
their forms at t=0. However, for c10, a rather arbitrary

initial pulse splits into a sequence of tensile solitary waves
each described by the exact solution �34� �45�. It is found
that less time is required for solitary wave formation at posi-
tive value of c2 than that of the DDE solitary wave forma-
tion. The value of c2 affects the amplitude and the velocity of
the wave but not the number of solitary waves arising from
the input. Thus we found that the larger is the positive value
of c2 the higher and faster are the arising solitary waves. The
number of generated solitary waves depends upon the mass
of the input. Cubic nonlinearity does not affect the number of
solitary waves.

On the contrary, with decreasing negative value of c2 we
obtain that smaller solitary waves propagate more slowly,
and more time is needed for the formation of the solitary
waves. A threshold value of negative c2 is found after which
a breaking down of the initial wave happens, and no solitary
wave appears. This value is equal to the limiting value
−2c1 /3c2 found from the analysis of the exact solution. Our
results confirm the prediction done on the basis of exact so-
lutions that no tensile solitary waves exist for c2�0 and c1
�0, while no compression waves exists for c2�0 and c1
0 �remember that Eq. �35� does not describe bounded so-
lutions in this case�. The oscillating wave packets arise in-
stead of the trains of localized strain waves.

Another evolution is observed for c20, when the forma-
tion of the waves �35� turns out to be possible �46�. In par-
ticular, a generation of tensile waves happens for c1�0, and
of compression waves for c10. No generation of the local-
ized waves happens for small values of c2; here an evolution
happens according to solution �34�. However, a tensile soli-
tary wave arises above some threshold value of c2. Contrary
to the formation of the waves �34�, the value of c2 affects the
number of generated solitary waves �35�. Increase in an ini-
tial velocity of the input results in an increase in the number
of generated waves. Like for the formation of the waves �34�,
the number of generated waves �35� depends upon the value
of c1.

Interaction of strain solitary waves is studied in Refs.
�47,48�. It was found that the waves of the same kind interact
like the solitary waves of the KdV equation for a takeover
interaction, and like the solitary waves of the Boussinesq
equation at the head-on interaction. However, waves of dif-
ferent kind demonstrate another evolution on the takeover
interaction that already similar to that of the Gardner equa-
tion �44�.

When the last nonlinear terms in Eq. �23� are negligibly
small, its traveling wave solution is obtained from the ODE
similar to Eq. �20�. Then the parameters of solutions �34� and
�35� are defined by

TABLE III. Signs of the wave parameters and types of the waves for �=0.

V2 �0;cL
2 −c0

2� �cL
2 −c0

2 ;cL
2� �cL

2 ;cL
2 +c0

2� cL
2 +c0

2

A 0 0 0 �0

Q+ 0 �−1;0� �−1 0

Q− 0

Wave Tensile �34� Tensile �34� Compression �35� Compression �34�
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A =
18�B��V2 − A� + D2�

BN
,

Q =
1 +
27M�B��V2 − A� + D2��

2BN2 . �37�

Again the amplitudes of the solutions are of either sign. So-
lution �35� is bounded for positive values of M provided that
B��V2−A�+D20.

B. Localized strain waves for the structural models

At first glance, the solutions of Eq. �33� at a0=0, a1=0
possess the same properties as those of a phenomenological
model. Indeed, exact solutions of two types �34� and �35�
may be obtained, where for �=0 with

A =
4S

��c0
2 + cL

2 − V2�
, Q� = �

cL
2 − V2 − c0

2

cL
2 − V2 + c0

2 ,

k = 2
 p

��cl
2 − V2�

�38�

and for �=−2S

A =
4S

��c0
2 + V2 − cL

2�
, Q� = �

V2 − cL
2 − c0

2

V2 − cL
2 + c0

2 ,

k = 2
 p

��V2 − cl
2�

, �39�

where c0
2=S2 / �p��.

However, the dependence of the equation coefficients on
velocity gives rise to different predictions about the existence
and the kind �tensile or compression� of solutions. First, for
�=0 we have V2�cl

2, while for �=−2S−V2cl
2. In both

cases the solution of the first kind �34� is realized for Q�

0, while bounded solution of the second kind �35� appears
at Q��−1.

The sets of the parameters �38� and �39� correspond to
physically different processes that follow from the relation-
ship between micro- and macrostrains, Eq. �32�. A substitu-
tion of the solutions with parameters defined by Eq. �38� into
Eq. �32� demonstrates that for �=0, u=0 at ���→�, which
means the absence of a microstructure in the absence of the
macrostrain wave. For Q=Q+ at the point of maximum/
minimum, �=0, there is a shift of sublattice that is less than
or equal to the half of its period, u�0���. For Q=Q− such a
shift is realized provided that

cL
2 − c0

2 � V2 � cL
2 , �40�

Similarly, u=� at ���→� for �=−2S that corresponds to a
preliminary shift by a half-period before macrostrain solitary
waves comes. Passing the point of maximum/minimum, �
=0, yields an additional shift by a half-period of the sublat-
tice for Q=Q+, while for Q=Q− a shift is realized when the
velocity of the wave lies within the interval

cL
2 � V2 � cL

2 + c0
2. �41�

Therefore, no simultaneous existence of the localized mac-
rowaves, corresponding to the choices �=0 and �=−2S, is
possible since different boundary conditions for macrodis-
placements at infinity, u=0 or u=�, are needed at one time.

For each value of � an analysis of solutions �34� and �35�
gives rise to the dependence of the possible kind of localized
strain macrowave on its velocity. The results for �=0 and
�=−2S are summarized in Tables III and IV correspond-
ingly. The absence of waves with Q− for some intervals is
caused by the restrictions of the boundary conditions �40�
and �41�. Certainly, permitted intervals for the velocity
should be checked, V2�cl

2 for �=0, and V2cl
2 for �=

−2S. The most important conclusion following from these
tables is the absence of simultaneous existence of the com-
pression and tensile waves for both values of � that differs
from the case of essentially nonlinear waves studied in the
previous section in a phenomenological way.

TABLE IV. Signs of the wave parameters and types of the waves for �=−2S.

V2 �0;cL
2 −c0

2� �cL
2 −c0

2 ;cL
2� �cL

2 ;cL
2 +c0

2� cL
2 +c0

2

A �0 0 0 0

Q+ 0 �−1 �−1;0� 0

Q− 0

Wave Compression �34� Compression �35� Tensile �34� Tensile �34�
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FIG. 1. Compression macrostrain wave and corresponding wave
of microstrain in the interval cL

2 +c0
2�V2�cl

2.

-3 -2 -1 1 2 3
Θ

1

2.5
Ux

-10 -5 5 10
Θ

1

Π
����
2

u

FIG. 2. Compression macrostrain wave and corresponding wave
of microstrain in the interval cL

2 −c0
2�V2�cL

2, V2�cl
2.
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The sign of the amplitude of the wave A / �Q�+1� de-
pends on the relationship between V, cL, and c0. However,
the variation in the value of the amplitude of the wave
A / �Q−+1� does not depend on the variation in the velocity V
while A / �Q++1� does. These variations are different for dif-
ferent values of �. Thus, for �=0 the amplitude of the tensile
wave A / �Q�+1� increases with increase in the velocity,
while that of the compression wave decreases. For �=−2S
all is inverted. A special case corresponds to the so-called
“fat” wave that appears as Q� tends to zero. In this case the
width of the wave increases without limit while its amplitude
tends to the finite value equal to A. It is called a “fat” solitary
wave. For �=0 this specific case is realized when the veloc-
ity tends to 
cL

2 −c0
2, while for �=−2S we obtain the “fat”

wave solution when the velocity tends to 
cL
2 +c0

2.
An analysis of the shapes of the exact solutions also

should take into account the coupling governed by Eq. �32�.
Depending upon the value of the first derivative at �=0, one
can express it in a different way. Reversing the cos function
for derivation of the expression for u, one has to avoid the
point where the first derivative does not exist. This breaking
happens for �=0 at �=0 and for Q=Q+. Therefore, the so-
lution for u obtained using both Eqs. �34� and �35� should be
written as

u = arccos� ��V2 − E�Ux

S
+ 1� for � � 0, �42�

u = 2� − arccos� ��V2 − E�Ux

S
+ 1� for �  0. �43�

Similar conclusions may be done using the phase dia-
grams analysis of Eq. �30�, e.g., like in Ref. �11�.

Typical profiles for the waves with velocities from the
interval cL

2 +c0
2�V2�cl

2 are shown in Fig. 1. Similar profiles
arise for cL

2 �V2�cL
2 +c0

2 ,V2�cl
2, however, a singularity in

the solution appears when V→cL.

The profiles corresponding to the interval cL
2 −c0

2�V2

�cL
2 ,V2�cl

2 are shown in Fig. 2. Now the first derivative is
zero for Q=Q− at �=0, and the expression for u reads

u = arccos� ��V2 − E�Ux

S
+ 1� . �44�

One can see in Fig. 2 a changing of the kind of the mac-
rostrain wave to the tensile wave. The profile of the micros-
train now describes local perturbation of the internal struc-
ture with coming back to the initial undisturbed state.

A “fat” solitary wave of macrostrain is shown in Fig. 3.
Note that the amplitude of the macrostrain wave is indiffer-
ent to the tendency of the velocity to the threshold of the
“fat” wave regime. On the contrary, a microstrain “fat” wave
growths by the value corresponding to the half-period of the
sublattice. Another shape of the “fat” wave is realized when
V2→cL

2 −c0
2 from below. One can see in Fig. 4 that the profile

for the macrostrain “fat” wave is similar to that of the wave
shown in Fig. 3. However, the corresponding microstrain
wave has not a bell-shaped form anymore, now it describes
the shift by the period of the sublattice. However, its shape
differs from that one shown in Fig. 1.

For �=−2S and Q=Q+ the first derivative u� is not zero at
�=0, and the solution for u corresponding to solution �34�
reads

u = arccos� ��V2 − E�Ux

S
− 1� � � 0, �45�

u = − arccos� ��V2 − E�Ux

S
− 1� �  0. �46�

Typical profile of the wave is shown in Fig. 5, where the
profile of the microstrain wave describes transformation
from one nanostructure to another. Again the regime of the
“fat” wave is possible as shown in Fig. 6 where the profile of
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FIG. 3. “Fat” compression macrostrain wave and corresponding
wave of microstrain when V2→cL

2 −c0
2.

-5 -3 -1 1 3 5
Θ

1

2

Ux

-10 -5 5 10
Θ

Π

2 Π
u

FIG. 4. “Fat” macrostrain compression wave and corresponding
microstrain wave for V2→cL
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FIG. 5. Tensile macrostrain wave and corresponding microstrain
wave with the velocities from the interval cL

2 +c0
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FIG. 6. “Fat” tensile macrostrain wave and corresponding mi-
crostrain wave with V2 tends to cL

2 +c0
2 from above.
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the microstrain wave has a “stepwise” shape. For �=−2S
and Q=Q− we have for u

u = arccos� ��V2 − E�Ux

S
− 1� . �47�

Then a wave of macrostrain gives rise to the perturbation of
the shift of sublattice in the interval cL

2 �V2�cL
2 +c0

2 ,V2

cl
2, see Fig. 7, while Fig. 8 demonstrates the “fat” macros-

train wave generating a corresponding microstrain wave.
Again the amplitude of the macrostrain wave does not de-
pend on velocity, while the microstrain wave tends to the
undisturbed value for �=0 as the velocity tends to the thresh-
old value for the “fat” wave.

C. Dispersive features of phenomenological
and structural models

Dispersive properties of the phenomenological model Eq.
�19� follows from the last expression of Eq. �36�,

V2 =
a + �4k2

1 + �3k2 .

Here the mixed dispersion provides a threshold value for
the velocity equal to 
�4 /�3 as k→�. Certainly the wave
belongs to the acoustic mode. The solution of the generalized
model Eq. �23� gives rise to a more complicated dispersion
relation following from the last expression in Eq. �37�,

k2V4 + �B

I
− k2�C

I
+

A

�
��V2 +

AC

�I
k2 +

D2

�I
−

AB

�I
= 0.

It possesses two kinds of solutions; see �19� for details.
The most important is that one of them belongs to the optic
mode while another one belongs to the acoustic mode.

Linearized structural models �Eqs. �25� and �26� and Eqs.
�28� and �29�� do not exhibit dispersion for the macrostrains.
There exists generalization of the model �Eqs. �25� and �26��
as well as of its weakly nonlinear analog �Eqs. �15� and �16��
taking into account shear macrostrains. In this case disper-
sion relation contains both acoustic and optic branches while
longitudinal strain waves remain nondispersive.

The last expressions in Eqs. �38� and �39� demonstrate
dispersion for the macrostrain wave,

V2 = cl
2 −

4p

�k2 ,

V2 = cl
2 +

4p

�k2 ,

for �=0 and �=−2S, respectively. Therefore, in the presence
of nonlinear coupling, macrostrain wave acquires dispersion
of the microstrain optical mode.

V. CONCLUSIONS

To sum up, two approaches for the materials with internal
structure are considered and compared. In the first, both dis-
persion and essential nonlinearity are described in a phenom-
enological way. It is developed for the seismic materials and
paramagnetic materials but it might be formally extended for
the materials with micro- or even nanostructure. Another ap-
proach is developed for the crystals with deviations at the
nanolevel. According to it, both dispersion and essential non-
linearity for the macrostrain wave may be caused by varia-
tions in the internal structure of a crystal.

An important finding is that the governing equation for
traveling macrostrain waves is the almost the same for both
approaches. It points to an advantage of the phenomenologi-
cal approach since it is simpler, and the parameters of the
model can be measured. However, a comparison of the exact
solutions reveals important deviations that demonstrate a
need in the theory taking into account the proper internal
structure of the material. They concern the absence of simul-
taneous existence of the waves allowed by the phenomeno-
logical theory, as well as strong dependence of the kind of
the wave on the value of its velocity. The localized waves
possess optic dispersion features while phenomenological
theory predicts existence of the macrostrain wave whose dis-
persion belongs to the acoustic branch.

More important is that the proper structural theories allow
us to reveal the behavior of the microstrains that describe
structural deviations in the crystalline lattice, formation of
defects, etc. These structural deviations might be predicted
by observation of the evolution of macrostrain solitary
waves. Future studies focus on the numerical study of the
formation of the waves in the framework of the structural
models as well on the search of the possibilities to measure
the value for the parameters of the models.
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FIG. 7. Tensile macrostrain wave and corresponding microstrain
wave in the interval cL
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FIG. 8. “Fat” tensile macrostrain wave and corresponding mi-
crostrain wave with V2 tends cL
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2 from below.
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